\qquad Date \qquad

Master 2.13 Step-by-Step 1

Lesson 1, Question 7

Step 1 Use the digits 1 to 9 . Use each digit only once.
Arrange the digits to make a 6-digit number as close to 100000 as possible.

\square

Step 2 Use the digits 1 to 9 . Use each digit only once.
Arrange the digits to make a 6 -digit number as close to 500000 as possible.

\square

\square
\square
\square

Step 3 Find the difference between the number in Step 1 and 100000.

Step 4 Can you write a number that is close to 100000 ? If so, repeat Step 1.

Step 5 Find the difference between the number in Step 2 and 500000.
\qquad

Step 6 Can you write a number that is close to 500000 ? If so, repeat Step 2.

Step 7 Did you get closer to 100000 or to 500000 ?
How do you know?

Name \qquad Date \qquad

Master 2.14 Step-by-Step 2

Lesson 2, Question 4

Step 1 Begin with 1000. Add 498. \qquad

Step 2 Subtract 202 from your answer from Step 1. \qquad

Step 3 Add 204 to your answer from Step 2. \qquad

Step 4 Compare your answer from Step 3 to the number you started with. What is the difference between the numbers?
\qquad

Step 5 If you subtract 500 from the number in Step 3, what will you get?
\qquad

Step 6 How does this compare with the original number you started out with?
\qquad

Step 7 Find 498-202 + 204 . \qquad

Step 8 Repeat Steps 1 through 3 again, but with a different starting number. If you subtract 500 from the number you are told in Step 3, will you always get the original number?
\qquad

Step 9 Explain why the number trick works.
\qquad
\qquad

Name \qquad
\qquad

Master 2.15 Step-by-Step 3

Lesson 3, Question 6

Regional Recycling has a target of 2450 kg of aluminum.
Suppose Fairfield delivers 1665 kg of aluminum, and Westdale delivers 795 kg of aluminum.

Step 1 Find the sum $1665+795$.

Step 2 Compare the sum from Step 1 with the target of 2450.

Step 3 Will Regional Recycling meet its goal? How do you know?

Name \qquad Date \qquad

Master 2.16 Step-by-Step 4

Lesson 4, Question 5

Step 1 Look at the digits in the ones column.
$5+4+\square=$ \qquad 5
What is the least number you could add to $5+4$ that gives a sum with a 5 in the ones position? \qquad
Write the tens digit on top of the tens column.
Step 2 Look at the digits in the tens column.
$1+\square+7+5=$ \qquad 1
What is the least number you could add to the numbers in the tens column that gives a sum with a 1 in the tens position?
Write the hundreds digit on top of the hundreds column.
Step 3 Find the sum of the hundreds digits.
Write the thousands digit on top of the thousands column.
Step 4 Look at the digits in the thousands column.
$1+3+\square+1=7$
What is the least number you could add to the numbers in the thousands column that gives a sum with a 7 in the thousands position? \qquad

Name
Date
Master 2.17 Step-by-Step 5
Lesson 5, Question 6
Step 1 Write two 3- or 4-digit numbers you can subtract using mental math.
\qquad

Step 2 Write a story problem using the numbers from Step 1. Make sure it is a subtraction problem.
\qquad
\qquad
\qquad
\qquad

Step 3 Solve the problem.
\qquad
\qquad
\qquad
\qquad

Step 4 What strategy did you use? Why?
\qquad
\qquad
\qquad
\qquad

Name \qquad Date \qquad

Master 2.18 Step-by-Step 6

Lesson 6, Question 5

Use the digits 1 to 9 . Use each digit once.
Step 1 What is the greatest 4-digit number you can make? \qquad What is the least 4-digit number you can make? \qquad
Step 2 Write the numbers from Step 1 below.
What is the difference between the greatest and the least 4-digit numbers?

Step 3 Write another 4-digit number. \qquad
Step 4 Write a different 4-digit number that is as close as possible to the number in Step 3. \qquad
Step 5 Write the numbers from Steps 3 and 4 in the boxes below.
What is their difference?

Step 6 Can you find 2 numbers with a difference that is less than your answer in Step 5 ? If so, find the numbers.

Step 7 How did you decide where to place the digits?
\qquad
\qquad

Name \qquad Date \qquad

Master 2.19 Step-by-Step 7

Lesson 7, Question 8
You will need counters.
Step 1 Make an array to show 1×12.
Record the array.
Circle 2 groups of 6 counters to show 1×6 two times.

Step 2 Make an array to show 2×12.
Record the array.
Circle 2 groups of 12 counters to show 2×6 two times.

Step 3 Make an array to show 3×12.
Record the array.
Circle 3 groups of 12 counters to show 2×6 three times.

Step 4 Kayla finds the multiplication facts for 12 by doubling the multiplication facts for 6.
Does Kayla's strategy work?
How do you know?

Name \qquad
\qquad

Master 2.20 Step-by-Step 8

Lesson 8, Question 5

Step 1 How many seconds are in 1 minute? \qquad

Step 2 A ruby-throated hummingbird flaps its wings about 60 times each second. How many times would it flap its wings in 1 minute?

Step 3 How many minutes are in 1 hour? \qquad

Step 4 How many times does the hummingbird flap its wings in 1 hour?

Name
Date \qquad
Master 2.21 Step-by-Step 9
Lesson 9, Question 4
Step 1 Use mental math. Find the product 16×100. \qquad

Step 2 What is the difference between 100 and $99 ?$ \qquad

Step 3 How can you use your answer from Step 1 to find the product 16×99 ?
\qquad
Use this result to find the product 16×99.
\qquad

Step 4 Find each product.
$10 \times 99=$ \qquad
$6 \times 99=$ \qquad

Step 5 How can you use the products from Step 4 to find the product 16×99 ?
\qquad
\qquad
Use these products to find the product 16×99.
\qquad

Step 6 Describe the 2 strategies you used to find the product 16×99.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Name \qquad Date \qquad

Master 2.22 Step-by-Step 10

Lesson 10, Question 7
Step 1 Draw an array to show 45×23.

Step 2 Draw a line to break the array from Step 1 into 2 smaller arrays. The 2 smaller arrays should represent products that are easy to find.
Write down 2 products from Step 2.
\qquad \times \qquad = \qquad and \qquad \times \qquad = \qquad
How did you decide where to draw the line?
\qquad
\qquad

Step 3 Use your results from Step 2. Find the product 45×23.

Name \qquad Date \qquad

Master 2.23 Step-by-Step 11

Lesson 11, Question 6
Step 1 Find each quotient.

$$
32 \div 4=
$$

$3200 \div 4=$ \qquad
$36 \div 4=$ \qquad
$3600 \div 4=$ \qquad

Step 2 Use the quotients from Step 1 to help you estimate the quotient $3495 \div 4$.
\qquad
\qquad

Step 3 When Tyler estimated $3495 \div 4$, he wrote these statements:

- The quotient is between 800 and 900 .
- The quotient is greater than 850 .

Look at the second set of quotients you found in Step 1.
Explain how Tyler might have made his estimates.

Name \qquad Date \qquad

Master 2.24 Step-by-Step 12

Lesson 12, Question 8
Use the digits 8, 6, 1, and 4. Use each digit once.
Step 1 Write all the 4-digit numbers you can make with 8 in the thousands place.

Step 2 Divide each number from Step 1 by 7.
List all the numbers that are divisible by 7 with no remainder.
\qquad

Step 3 Repeat Step 1. This time write all the 4-digit numbers you can make with each remaining digit in the thousands place: 6 , then 4 , then 1 .
\qquad
\qquad
\qquad

Step 4 Divide each number from Step 3 by 7.
List all the numbers that are divisible by 7 with no remainder.
\qquad
\qquad
\qquad

Step 5 How do you know you have found all the 4-digit numbers made from the digits $8,6,1,4$ that are divisible by 7 with no remainder?
\qquad
\qquad
\qquad

Name \qquad
\qquad

Master 2.25 Step-by-Step 13

Lesson 13, Question 4

Step 1 How many seconds are in 1 minute? \qquad

Step 2 A cheetah runs 29 m every second.
How far does the cheetah run in 1 minute?
\qquad \times \qquad $=$ \qquad

Step 3 Connor runs 150 m in 1 minute.
How much farther than Connor will the cheetah run in 1 minute?
\qquad - \qquad = \qquad
How did you find out?

