\qquad Date \qquad

Master 8.21 Step-by-Step 1

Lesson 1, Question 5

Rhonda

Apak

Kayla

Sunil

Step 1 In each pizza above, shade the amount that each person ate:
Rhonda: 3 pieces
Apak: 4 pieces
Kayla: 5 pieces
Sunil: 6 pieces
Step 2 What fraction of each pizza is shaded?
Rhonda: \qquad
Apak: \qquad
Kayla: \qquad
Sunil: \qquad
Step 3 How do the fractions in Step 2 compare? How do you know?
\qquad
\qquad
Step 4 Who's correct-Sunil, who says he ate the most, or Rhonda, who says everyone ate the same amount? Explain.
\qquad
\qquad
\qquad

Name \qquad

Master 8.22 Step-by-Step 2

Lesson 2, Question 6

Step 1 How many eighths are in $\frac{1}{2}$ a pie? \qquad
In a whole pie? \qquad
Write 3 fractions, with denominator 8 , that are greater than $\frac{1}{2}$ but less than 1. \qquad
Step 2 How many sixths are in $\frac{1}{2}$ a pie? \qquad
In a whole pie? \qquad
Write 2 fractions, with denominator 6 , that are greater than $\frac{1}{2}$ but less than 1 . \qquad
Step 3 After the party, more than $2 \frac{1}{2}$ but less than 3 pies were left. Look at your answers to Steps 1 and 2.
How much pie might have been left? \qquad

Name \qquad Date \qquad

Master 8.23 Step-by-Step 3

Lesson 3, Question 7

Step 1 A quilt has 20 patches. $\frac{1}{4}$ of the patches are yellow.
Use patterns to find equivalent fractions:
$\frac{1}{4}=\frac{2}{8}=\frac{\square}{\overline{12}}=\frac{\square}{\overline{16}}=\frac{\square}{\overline{20}}$
How many patches out of 20 are yellow? \qquad

Step $2 \frac{3}{5}$ of the patches are green.
Use patterns to find equivalent fractions:
$\frac{3}{5}=\frac{\square}{10}=\frac{\square}{15}=\frac{\square}{20}$
How many patches out of 20 are green? \qquad

Step 3 Colour the patches on the quilt.

Step 4 Colour the rest of the patches red.
How many patches are red? \qquad

Step 5 What colour are the greatest number of patches? \qquad What colour are the least number of patches? \qquad

Name \qquad Date \qquad

Master 8.24 Step-by-Step 4

Lesson 4, Question 8

Step 1 Choose a decimal less than 0.45.

Step 2 Think subtraction.
Subtract your decimal from 0.45 to get the missing number.
$0.45-$ \qquad $=$ \qquad

Step 3 Write each decimal from Steps 1 and 2 as a fraction.
\qquad

Step 4 Repeat Steps 1 to 3, choosing a different decimal in Step 1.
\qquad Date \qquad

Master 8.25 Step-by-Step 5

Lesson 5, Question 4

Step 1 How many equal parts are there on the number line above? \qquad
Label $\frac{7}{10}$ on the number line.
Step 2 What is $\frac{4}{5}$ equivalent to? $\frac{4}{5}=\frac{\square}{\overline{10}}$
Step 3 Label $\frac{4}{5}$ on the number line above.
Step 4 Mark the benchmarks $0.25,0.5$, and 0.75 on the number line.
Which benchmark is closest to $\frac{7}{10}$ and $\frac{4}{5}$? \qquad
Step 5 Shade $\frac{7}{10}$ on a hundredths grid. How many more squares do you need to shade to cover $\frac{4}{5}$ of your grid? Colour these squares with a different colour.
$\frac{7}{10}=\frac{\square}{100}$ and $\frac{4}{5}=\frac{\square}{100}$
Write 5 fractions with denominator 100 that fall between $\frac{7}{10}$ and $\frac{4}{5}$.

Step 6 Write each of these fractions as a decimal.

Name \qquad Date \qquad

Master 8.26 Step-by-Step 6

Lesson 6, Question 6

These are special fractions for eighths: $\frac{48}{8}, \frac{56}{8}, \frac{64}{8}, \frac{72}{8}$
Step 1 Write each of the fractions above as a division statement.

$$
\begin{aligned}
& \frac{48}{8}=_\div \\
& \frac{56}{8}=_\div \\
& \frac{64}{8}=_\square \\
& \frac{72}{8}=_\quad \div
\end{aligned}
$$

Step 2 Find the quotient for each division statement in Step 1.

Step 3 What do you notice about all the answers in Step 2?
\qquad
Step 4 Explain why you think the fractions are special.

Step 5 Now look at the special fractions for twelfths. Think of the multiplication facts for 12 . Fill in the missing boxes.

$$
\begin{aligned}
& \square \div 12=1 \text {; this special fraction is } \frac{\square}{\overline{12}} . \\
& \square \div 12=2 \text {; this special fraction is } \frac{\square}{12} .
\end{aligned}
$$

Step 6 Find 2 more special fractions for twelfths.

Name \qquad Date \qquad
Master 8.27 Step-by-Step 7
Lesson 7, Question 8

Step 1 Estimate 9.47×5.
Round 9.47 to the nearest whole number. \qquad

Step 2 Multiply your answer for Step 1 by 5 . \qquad

Step 3 Is 9.47 greater than or less than its rounded number? \qquad

Step 4 Is 9.47×5 greater than or less than 45 ? \qquad
How do you know? \qquad
\qquad

Step 5 Estimate $23.86 \div 4$.
Round 23.86 to a number compatible with 4. \qquad

Step 6 Divide your answer for Step 5 by 4 . \qquad

Step 7 Is 23.86 greater than or less than its rounded number? \qquad

Step 8 Is $23.86 \div 4$ greater than or less than 6 ? \qquad
How do you know? \qquad

Name \qquad Date \qquad

Master 8.28 Step-by-Step 8

Lesson 7, Question 8

Step 1 How many gifts does Jakob have? \qquad
How much ribbon does he need for each gift? \qquad

Step 2 Write a multiplication sentence to show how much ribbon Jakob needs.
\qquad

Step 3 Use Base Ten Blocks on a place-value mat. Model the multiplication.

Step 4 How many ones are on the mat? \qquad
How many tenths? \qquad

Step 5 Trade 20 tenths for 2 ones.
How many ones are there now \qquad
How many tenths? \qquad
How much ribbon does Jakob need? \qquad

Step 6 How much ribbon did Jakob buy? \qquad

Step 7 Compare the amount of ribbon Jakob bought with your answer in Step 5. Does Jakob have enough ribbon? \qquad
How do you know? \qquad
\qquad

Name \qquad Date \qquad

Master 8.29 Step-by-Step 9

Lesson 9, Question 6

Step 1 To estimate 2.49×7 :
Find 2×7. \qquad Find 3×7. \qquad
What is a good estimate for 2.49×7 ? \qquad

Step 2 Estimate each product.
Show how you made the estimate.
3.73×4 \qquad
\qquad
5.08×3 \qquad
\qquad
8.2×2 \qquad
\qquad

Step 3 Show whether each product is greater than (>) or less than (<) 15.
$2.49 \times 7 \square 15$
$5.08 \times 3 \square 15$
3.73×4 \square 15
$8.2 \times 2 \square 15$

Name \qquad Date \qquad

Master 8.30 Step-by-Step 11

Lesson 11, Question 6

Step 1 How many days in a week does Olav walk to work? \qquad
How many one-way trips does Olav make each day? \qquad

Step 2 Use your answers in Step 1.
Write a multiplication sentence to show how many one-way trips Olav makes each week.

Step 3 How many kilometres does Olav walk a week? \qquad
Divide this number by the number of one-way trips Olav makes each week.

Step 4 How far is 1 one-way trip? \qquad
How far does Olav live from his workplace? \qquad

Name \qquad Date \qquad

Master 8.31 Step-by-Step 12

Lesson 12, Question 5

Step 1 How much does the tripod cost? \qquad
How many people are sharing the cost? \qquad
Write a division statement to find how much each person will pay.

Step 2 Use a calculator to divide.
How much will each person pay? \qquad

Step 3 How much is the discount? \qquad
Subtract the discount from the original cost.
$\$ 89.46$ - \qquad $=$ \qquad
What is the new cost of the tripod? \qquad

Step 4 Use your answer from Step 3.
Write a new division statement to show how much each person will pay.

Use a calculator to divide.
How much did each person pay? \qquad

