\qquad
\qquad

Master 6.11 Step-by-Step 1

Lesson 1, Question 5

Step 1 Here is Jack's watch when he left home:
What time is it? \qquad : \qquad :

Here is Jack's watch when he got to his friend's house:

What time is it? \qquad : : \qquad

Step 2 How long did it take Jack to get to his friend's house? \qquad

Step 3 What time did Jack get to his friend's house? \qquad $: \quad$: $:$ He left 30 s later. What time did Jack leave? \qquad :__ : :

Step 4 Draw what Jack's watch looked like after the 30 s .

Step 5 How long do you think it took Jack to return home? Explain.

Name \qquad Date \qquad

Master 6.12 Step-by-Step 2

Lesson 2, Question 7

Step 1 Think about the roads the Cheung family might take.
On some roads, the family could drive 100 km in 1 h .
On other roads, the family could drive: 80 km in 1 h ; or 60 km in 1 h ; or even 50 km in 1 h .
Fill in the table with possible distances and times. The first line is done for you.

Distance	Time
100 km	1 h

Total: 500 km

Step 2 How much time would the Cheung family spend driving? \qquad
Step 3 Think about some stops the Cheung family might make along the way. Record all of them in the table.

Stop	Time Spent
Rest stop	15 min
Lunch	1 h

Total:

Step 4 How much time would the Cheung family spend on these stops? \qquad
Step 5 What would be the total time for the Cheung family to reach the vacation resort? \qquad

Name \qquad Date \qquad

Master 6.13 Step-by-Step 4

Lesson 4, Question 8

Use play money if it helps.
Step 1 How much money does the man start with?
How much money does he have when he gets to the mall?

Step 2 Subtract to find the money he lost.
\qquad - \qquad = \qquad

Step 3 How many ways can you make the amount in Step 2 using exactly 4 bills? Fill in the table.

Number of Bills	$\mathbf{\$ 5 0}$	$\mathbf{\$ 2 0}$	$\mathbf{\$ 1 0}$	$\mathbf{\$ 5}$	Total Value
4					
4					
4					

Step 4 Think about some other bills and coins that would make up this amount.
Which of these ways uses exactly 4 bills?

Step 5 List 3 different sets of bills and coins the man might have lost.
\qquad
\qquad
\qquad

Name \qquad Date \qquad
Master 6.14 Step-by-Step 5
Lesson 5, Question 5
Step 1 Start counting Michel's money. Fill in the table.

Bill	Number of Bills	Value
$\$ 20$		
$\$ 10$		

Step 2 How much money does Michel have with the $\$ 20$ and $\$ 10$ bills? \qquad

Step 3 The aquarium costs $\$ 82.27$.
Does Michel have enough money? \qquad
Did you need to count all the money to find out? \qquad
Explain. \qquad

Step 4 Which bills and coins could Michel use to pay for the aquarium?
\qquad
What is the total value of these bills and coins? \qquad

Step 5 How much change would Michel get? \qquad

Step 6 Pick another set of bills and coins Michel might use to pay. What is his change now?

Name \qquad Date \qquad

Master 6.15 Step-by-Step 6

Lesson 6, Question 4

Step 1 A benchmark is something you use as a reference. Which container would make a good benchmark? \qquad
Should you choose the smallest container? The largest?

Which will you pick as your benchmark? \qquad
Step 2 Choose another container. \qquad
Do you think it would hold more or less water than your benchmark
container? \qquad
Would it hold the same amount? \qquad
How do you know? \qquad
Step 3 Repeat Step 2 for each container.
Step 4 Sort the containers into these sets:
greater capacity than the benchmark container: \qquad
lesser capacity than the benchmark container: \qquad
capacity equal to the benchmark container: \qquad
Step 5 For each container:
Fill the container with water.
Do you think this water is more or less than the water your benchmark container will hold? How can you check?

Name \qquad Date \qquad

Master 6.16 Step-by-Step 7

Lesson 7, Question 4

Step 1 Use 18 centimetre cubes to build a rectangular prism.
Build a prism that is only 1 cube high.
How many different prisms can you make? Fill in the table.

Length	Width	Height
18	1	1
9		1
		1

Step 2 Build a prism that is 2 cubes high.
How many different prisms can you make? \qquad

Step 3 Build a prism that is 3 cubes high. How is this the same as another prism you already made?
\qquad

Step 4 How many different prisms can you make using all 18 cubes?

Step 5 Each prism you built has 18 centimetre cubes. What is the volume of each prism?

Name \qquad Date \qquad

Master 6.17 Step-by-Step 8

Lesson 8, Question 3

Step 1 Look around the classroom. Find 2 different objects with about the same volume. Label the objects B and C.

Step 2 Partially fill a container with water. Mark the water level as A.
Submerge object B. Mark the new water level as B.

Step 3 Remove object B.
Use a graduated cylinder.
Fill the container to the level marked B.
How much water have you added? \qquad
What is the volume of object B ? \qquad

Step 4 Submerge object C in the container.
Mark the new water level as C.
Remove object C.
Use a graduated cylinder.
Fill the container to the level marked C.
How much water have you added? \qquad
What is the volume of object C ? \qquad

Step 5 Do objects B and C have about the same volume? Explain.

Do objects need to have the same shape to have the same volume? Explain.

Name \qquad Date \qquad
Master 6.18 Step-by-Step 9
Lesson 9, Question 6
Step 1 Suppose Peter eats peanut butter and jelly sandwiches for lunch every school day for 40 weeks.
There are 5 school days each week.
How many lunches would Peter need?

Step 2 Peter uses 40 g of peanut butter per sandwich.
In 40 weeks, how many grams of peanut butter would Peter use?

What is this mass in kilograms? \qquad

Step 3 Peter uses 30 g of jelly per sandwich.
In 40 weeks, how many grams of jelly would Peter use? \qquad
What is this mass in kilograms? \qquad

Step 4 How many 1-kg containers of peanut butter would Peter use in 40 weeks? \qquad
How many 1-kg containers of jelly would Peter use in 40 weeks?

Name \qquad Date \qquad
Master 6.19 Step-by-Step 10
Lesson 10, Question 6
Step 1 One sheet of paper has a mass of about 5 g .
There are 500 sheets of paper in 1 package.
What is the mass of 1 package of paper in grams? \qquad
What is the mass in kilograms? \qquad

Step 2 What is the mass of 2 packages of paper? \qquad

Step 3 There are 10 packages of paper in a box. What is the mass, in kilograms, of 1 box of paper? \qquad

Step 4 How many kilograms are in 1 t ?
$1 \mathrm{t}=$ \qquad kg

Step 5 How many boxes of paper would it take to make 1 t ? \qquad
How do you know? \qquad
\qquad

