Name $\qquad$ Date $\qquad$
Master 7.14 Step-by-Step 1

## Lesson 1, Question 3

Step 1 Choose any 2-digit number. $\qquad$
Write your number using only line segments.
For example, write the number 23 like this: $\square$

Step 2 Draw the number from Step 1 on the grid below.
Make certain the line segments lie on grid lines.


Step 3 Record the coordinates of the corners of the digits.

Write instructions to draw your number.
$\qquad$
$\qquad$

Name $\qquad$ Date $\qquad$
Master 7.15 Step-by-Step 2

## Lesson 2, Question 4

Use tracing paper.


Step 1 Which translation would move Figure A to coincide with Figure B?

Step 2 Think of a rotation.
Mark a dot on the picture above to show the turn centre that would turn Figure A to coincide with Figure B.

What fraction of a turn would Figure A move?
$\qquad$

Step 3 Above, draw Figure C congruent to Figures A and B.
Describe a transformation that would move
Figure A to coincide with Figure C.

Describe a transformation that would move
Figure C to coincide with Figure B.

Name $\qquad$ Date $\qquad$
Master 7.16 Step-by-Step 3

## Lesson 3, Question 4

You will need a 5 by 5 geoboard, geobands, and dot paper.

Step 1 Divide the geoboard into 2 congruent parts.
How many different ways can you do this? $\qquad$
Record each way on dot paper.

Step 2 Use your results from Step 1.
Divide the geoboard into 4 congruent parts.
How many different ways can you do this?
Record each way on dot paper.

Step 3 Use your results from Step 2.
Divide the geoboard into 8 congruent parts.
How many different ways can you do this? $\qquad$
Record each way on dot paper.
$\qquad$

## Master 7.17 Step-by-Step 4

## Lesson 4, Question 5

Step 1 Add a square to this figure so the broken line is a line of symmetry.


Step 2 Add a square to this figure so the broken line is a line of symmetry.


Step 3 Is it possible to add a square to this figure so the broken line is a line of symmetry? How do you know?


Name $\qquad$ Date $\qquad$
Master 7.18 Step-by-Step 6

## Lesson 6, Question 3

A tetromino is made with 4 congruent squares.
There are 5 different tetrominoes.


You will need 2-cm grid paper and scissors.

Step 1 Choose one of the tetrominoes.
Draw 8 copies of the tetromino on grid paper.
Use scissors. Cut out the copies.
Try to arrange the tetrominoes in a tiling pattern.

Step 2 Repeat Step 1 four times.
Each time use a different tetromino.

