Name $\qquad$ Date $\qquad$

## Master 11.11a Step-by-Step 1

## Lesson 1, Question 5

Step 1 Yellow is more likely, so there are more $\qquad$ sectors than red.
Red is more likely, so there are more $\qquad$ sectors than blue.

Look at the first spinner on Master 11b. It has 8 sectors.
How many sectors will you colour yellow? $\qquad$ red? $\qquad$ blue? $\qquad$
Colour the spinner.
Is there a different way to colour the spinner? Explain.

Step 2 Blue and green are equally likely.
They cover $\qquad$ sectors.

Yellow is more likely. It covers $\qquad$ sectors.
Look at the second spinner on Master 11b. It has 5 sectors.
How many sectors will you colour blue? $\qquad$ green? $\qquad$ yellow? $\qquad$
Colour the spinner.
Is there a different way to colour the spinner? Explain.

Step 3 Yellow is certain.
Are there any blue sectors? $\qquad$ Are there any red sectors? $\qquad$
Look at the third spinner on Master 11b. It has 10 sectors.
Yellow covers $\qquad$ of the sectors.
Colour the spinner.
Is there a different way to colour the spinner? Explain.
$\qquad$

## Master 11.11b Spinners for Lesson 1, Question 5



Name
Date $\qquad$

## Master 11.12 Step-by-Step 2

## Lesson 2, Question 4

Vicki scores a point if the pointers land on the same colour.
Alastair scores a point if the pointers land on different colours.

Make the spinners identical for each case.

Step 1 Vicki will win if the spinners are mostly one colour. Choose 2 colours. Colour the spinners so that Vicki is more likely to win.


Step 2 Alastair will win if each spinner has 4 different colours. Choose 4 colours. Colour the spinners so that Alastair is more likely to win.


Step 3 The game is fair if the pointers are equally likely to land on the same colour or a different colour. Choose 2 colours. Colour the spinners so that Vicki and Alastair have equal chances of winning.


Name $\qquad$
$\qquad$

## Master 11.13 Step-by-Step 3

## Lesson 3, Question 2

Step 1 What are the possible outcomes when Dave tosses a coin?
$\qquad$ or $\qquad$

Step 2 Dave tosses heads 12 times out of 20.
So, Dave got tails 20 - $\qquad$ = $\qquad$ times

Step 3 What fraction of the tosses were heads? $\frac{\square}{20}$
What fraction of the tosses were tails? $\frac{\square}{20}$

Step 4 How many times would you expect Dave to get heads in 20 tosses? $\qquad$
What fraction of the tosses would be heads? $\qquad$
How do Dave's results compare with what you expected?

Name $\qquad$ Date $\qquad$

## Master 11.14 Step-by-Step 4

## Lesson 4, Question 3

Jawaan, Carl, Orenda, and Tansy run in the relay race.
Step 1 Complete this tree diagram.
Show all the possible orders for the 4 runners.
J = Jawaan
C = Carl
O = Orenda
T = Tansy





Step 2 How many possible orders did you find? How many orders have Tansy running first? $\qquad$
Step 3 The runners' names are drawn from a hat. What fraction describes Tansy's probability of running first? $\qquad$
Step 4 If you were the track coach, how would you decide on the order of your relay team? Would you pull names from a hat? Explain.
$\qquad$
$\qquad$

Name $\qquad$ Date $\qquad$

## Master 11.15 Step-by-Step 6

## Lesson 6, Question 2

Step 1 What are the possible outcomes of tossing 3 coins?
Complete this table.

| First Coin | Second Coin | Third Coin |
| :--- | :--- | :--- |
| Heads | Heads | Heads |
| Heads | Heads | Tails |
| Heads | Tails |  |
| Heads |  |  |
| Tails | Tails | Tails |
| Tails |  |  |
| Tails |  |  |
| Tails |  |  |

Step 2 How many different outcomes are possible? $\qquad$

Step 3 If a game is fair, each player has an equal chance of winning.
How can we divide the number of possible outcomes into 2 equal parts?

Step 4 Look at the table in Step 1.
How many outcomes include at least 2 heads? $\qquad$
How many outcomes include at least 2 tails? $\qquad$
Make up a fair game with 3 coins.
Player A gets a point if $\qquad$ .
Player B gets a point if $\qquad$ .
How do you know this game is fair?

Name $\qquad$
$\qquad$

## Master 11.16a Unit Test: Unit 11 Probability

## Part A

1. Use the words likely, unlikely, impossible, possible, or certain to describe each event.
a) The sun will rise tomorrow. $\qquad$
b) You will dig to the centre of the Earth. $\qquad$
c) You will win a gold medal at the Olympics. $\qquad$
d) You will sleep tonight. $\qquad$
2. Eric has red, green, yellow, and blue marbles. He wants to give Andrea 2 marbles. What possible colour combinations can he give her?
3. Colour this spinner so that green is more likely than blue and blue is more likely than red.

$\qquad$
$\qquad$

## Master 11.16b Unit Test continued

## Part B

4. Ruby will use this spinner to choose a flavour of ice cream.

a) What is the probability that Ruby will order strawberry ice cream?
$\qquad$
b) Which flavours have equal chances of being ordered?
$\qquad$
c) Just for fun, Ruby spun the spinner 40 times. Here are her results:

Chocolate 8, Vanilla 10, Strawberry 17, Butterscotch 5
Are these results what you would expect? Explain.
$\qquad$

## Master 11.16c Unit Test continued

## Part C

5. Design a fair game of chance for 2 players. Use a 2-colour counter and a number cube. Each player should have a different way of scoring a point. Explain how you know your game is fair.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

Name $\qquad$

## Master 11.17 Sample Answers

## Unit Test - Master 11.16

## Part A

1. a) Certain
b) Impossible
c) Possible or unlikely
d) Likely
2. Red/green, red/yellow, red/blue, green/yellow, green/blue, yellow/blue
3. Students should colour the spinner so that green covers the greatest area (for example, $\frac{4}{8}$ ).
The blue area is smaller than green but larger than red (for example, $\frac{3}{8}$ ).
Red covers the smallest area (for example, $\frac{1}{8}$ ).

## Part B

4. a) $\frac{3}{8}$
b) Chocolate and vanilla
c) These results are what I would expect. They are close to the predicted probabilities, even though they don't match them exactly. My predicted probabilities were: chocolate and vanilla should each be about $\frac{2}{8}$ of 40 , or 10 .
Strawberry should be about $\frac{3}{8}$ of 40 , or 15 .
Butterscotch should be about $\frac{1}{8}$ of 40 , or 5 .

## Part C

5. Players take turns tossing the counter and rolling the number cube. Player A scores a point if the counter is red and the number cube shows an even number. Player B scores a point if the counter is white and the number cube shows an odd number. I know this game is fair because there is an equal number of ways for each player to score.

## Extra Practice Masters 11.18-11.21

Go to the CD-ROM to access editable versions of these Extra Practice Masters.


Program Authors<br>Peggy Morrow<br>Ralph Connelly<br>Bryn Keyes<br>Jason Johnston<br>Steve Thomas<br>Jeananne Thomas<br>Angela D'Alessandro<br>Maggie Martin Connell<br>Don Jones<br>Michael Davis<br>Sharon Jeroski<br>Trevor Brown<br>Nora Alexander<br>Cynthia Pratt Nicolson

Copyright © 2005 Pearson Education Canada Inc.
All Rights Reserved. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission, write to the Permissions Department.

Printed and bound in Canada
12345 -TC - 0807060504

PEARSON
Education
Canada

