\qquad
\qquad

Master 10.11 Step-by-Step 1

Lesson 1, Question 8

You will need $0.5-\mathrm{cm}$ grid paper.
Step 1 On grid paper, outline a 33 by 30 array.

Step 2 Draw a horizontal or a vertical line to break the array into 2 parts.

Step 3 How did you decide where to draw the line?
\qquad

Step 4 Write a multiplication sentence for each of the 2 smaller arrays.
\qquad
Are these products easy to find? Explain.
\qquad

If not, draw a different line in Step 2, and break the array into 2 different parts. Repeat Steps 3 and 4.
\qquad
\qquad

Step 5 Find the product for each of the 2 smaller arrays you created.

Step 6 Find the sum of the products in Step 5: \qquad What is the area of the gym floor?
\qquad Date \qquad

Master 10.12 Step-by-Step 2

Lesson 2, Question 5

Step 1 Complete the table.

Fraction	Decimal
$\frac{1}{9}$	
$\frac{2}{9}$	
$\frac{3}{9}$	

Step 2 Look at the Fraction column. What patterns do you see?

Step 3 Look at the Decimal column. What patterns do you see?

Step 4 Use the pattern you found in Step 3.
Do not use a calculator.
Predict the decimal equivalent of each fraction.
Complete the table.

Fraction	Decimal Prediction
$\frac{4}{9}$	
$\frac{5}{9}$	
$\frac{6}{9}$	
$\frac{7}{9}$	
$\frac{8}{9}$	

Step 5 How did you make your predictions?
\qquad
\qquad
Step 6 What is the decimal for $\frac{9}{9}$? Explain.
\qquad
\qquad
\qquad

Master 10.13 Step-by-Step 3

Lesson 3, Question 6

Step 1 Place an operation ($\times, \div,+,-)$ and a number in the box.
Input $\longrightarrow \square$ Output

Step 2 Complete the table.
Use the operation and the number from Step 1 to find the Output.

Input	Output
1	
3	
5	
7	
9	

Step 3 Graph the Input/Output numbers. Create your own intervals for the Output axis.

Output

3 5 7nput					

Step 4 Look at your graph. Describe it.

Name \qquad Date \qquad
Master 10.14 Step-by-Step 4

Lesson 4, Question 6

Step 1 The length of a domino is 2 units. Its width is 1 unit.
With dominoes, make a rectangle with 1 side 2 units long.
How many different rectangles can you make with 1 domino? \qquad
How many different rectangles can you make with 2 dominoes? \qquad
How many different rectangles can you make with 3 dominoes? \qquad
How many different rectangles can you make with 4 dominoes? \qquad

Step 2 Predict the number of different rectangles you could make with 6 dominoes. \qquad

Step 3 How can you check that your prediction is right?
\qquad
\qquad

Step 4 What are the first 6 Fibonacci numbers?
\qquad

Step 5 How do the numbers of rectangles you found relate to the Fibonacci numbers?
\qquad
\qquad

Master 10.15 Step-by-Step 6

Lesson 6, Question 3

Step 1 Draw 2 different figures on square dot paper.

Step 2 Can these figures be put together without any gaps or overlaps? \qquad If they can, then go to the next step.
If not, change one or more of the figures.
Step 3 Use your figures to make a tiling pattern.

Step 4 Describe your pattern.

Name \qquad Date \qquad

Master 10.16a Unit Test: Unit 10 Patterns in Number and Geometry

Part A

1. Multiply. Use mental math.
a) $2 \times 13 \times 5=$
b) $27 \times 5 \times 2=$ \qquad
c) $2 \times 186 \times 5=$ \qquad
d) $2 \times 43 \times 10=$ \qquad
e) $3 \times 13 \times 10=$ \qquad
f) $4 \times 50 \times 2=$ \qquad
2. Multiply.
$13 \times 30=$ \qquad
Use this multiplication fact to find the missing factors.
a) $\square \times 30=360$
b) $\square \times 30=420$
c) $330=\square \times 30$
d) $450=\square \times 30$
3. a) Change each fraction to a decimal.

Fraction	Decimal
$\frac{1}{13}$	
$\frac{2}{13}$	
$\frac{3}{13}$	
$\frac{4}{13}$	
$\frac{5}{13}$	
$\frac{6}{13}$	

b) Describe any patterns.
\qquad
\qquad
\qquad

Master 10.16b Unit Test continued

Part B

4. Evan is paid $\$ 8$ per hour to mow lawns.

The table shows his earnings.

Hours	Amount Earned (\$)
1	8
3	24
5	40
7	56

a) Write a pattern rule for the amount earned.
b) Draw a line graph to display the data.

c) Suppose Evan works 6 h.

Use the graph to find how much he will earn.
\qquad
\qquad

Master 10.16c Unit Test continued

5. Suppose you followed the Fibonacci pattern, but started at 7 .
$7,7,14, \ldots$
Show the first 10 numbers in this pattern.

Part C

6. a) Create a tiling pattern using more than two different figures.

b) Describe your pattern.
\qquad
\qquad

Name
Date \qquad

Master 10.17 Sample Answers

Unit Test - Master 10.16

Part A

1. a) 130
b) 270
c) 1860
d) 860
e) 390
f) 400
2. 390
a) 12
b) 14
c) 11
d) 15
3. a)

Fraction	Decimal
$\frac{1}{13}$	$0.076923 \ldots$
$\frac{2}{13}$	$0.1538461 \ldots$
$\frac{3}{13}$	$0.2307692 \ldots$
$\frac{4}{13}$	$0.3076923 \ldots$
$\frac{5}{13}$	$0.3846153 \ldots$
$\frac{6}{13}$	$0.4615384 \ldots$

b) 6 decimals are repeating decimals. The repeating decimals for fractions with numerators 1, 3, and 4 have 076923 in their core, but in a different order. The repeating decimals for fractions with numerators 2, 5, and 6 have 153846 in their core, but in a different order.

Part B

4. a) Multiply the number of hours worked by $\$ 8$.
b)

c) $\$ 48$
5. $7,7,14,21,35,56,91,147,238,385$

Part C

6. a)

Sample answer:

b) My tiling pattern uses 2 T-shaped figures, 2 kinds of isosceles right triangles (4 of each), and 2 squares.

Extra Practice Masters 10.18-10.21

Go to the CD-ROM to access editable versions of these Extra Practice Masters.

Program Authors
Peggy Morrow
Ralph Connelly
Bryn Keyes
Jason Johnston
Steve Thomas
Jeananne Thomas
Angela D'Alessandro
Maggie Martin Connell
Don Jones
Michael Davis
Sharon Jeroski
Trevor Brown
Nora Alexander
Cynthia Pratt Nicolson

Copyright © 2005 Pearson Education Canada Inc.
All Rights Reserved. This publication is protected by copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information regarding permission, write to the Permissions Department.

Printed and bound in Canada
12345 -TC - 0807060504

PEARSON
Education
Canada

